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a b s t r a c t

We explored the effects of prevalence, latitudinal range and clumping (spatial autocorrelation) of species
distribution patterns on the predictive accuracy of eight state-of-the-art modelling techniques: General-
ized Linear Models (GLMs), Generalized Boosting Method (GBM), Generalized Additive Models (GAMs),
Classification Tree Analysis (CTA), Artificial Neural Network (ANN), Multivariate Adaptive Regression
Splines (MARS), Mixture Discriminant Analysis (MDA) and Random Forest (RF). One hundred species
of Lepidoptera, selected from the Distribution Atlas of European Butterflies, and three climate variables
were used to determine the bioclimatic envelope for each butterfly species. The data set consisting of
2620 grid squares 30′ × 60′ in size all over Europe was randomly split into the calibration and the evalua-
tion data sets. The performance of different models was assessed using the area under the curve (AUC) of
a receiver operating characteristic (ROC) plot. Observed differences in modelling accuracy among species
were then related to the geographical attributes of the species using GAM. The modelling performance
was negatively related to the latitudinal range and prevalence, whereas the effect of spatial autocorrela-
tion on prediction accuracy depended on the modelling technique. These three geographical attributes

accounted for 19–61% of the variation in the modelling accuracy. Predictive accuracy of GAM, GLM and
MDA was highly influenced by the three geographical attributes, whereas RF, ANN and GBM were mod-
erately, and MARS and CTA only slightly affected. The contrasting effects of geographical distribution of

orma
tion

of clim
species on predictive perf
in species spatial distribu
studies and assessments

. Introduction

During recent years, a variety of modelling approaches have
een developed and used to convert point information of species
istribution into predictive maps. One increasingly employed class
f models is bioclimatic envelope models, which can be consid-
red as a special case of niche-based models or species distribution
odels (Guisan and Zimmermann, 2000; Austin, 2002; Guisan

nd Thuiller, 2005; Heikkinen et al., 2006). Bioclimatic envelope
odels correlate current species distributions with climate vari-

bles, and may then be used to project spatial shifts in species

limatic envelopes according to selected climate change scenarios
Bakkenes et al., 2002; Beaumont and Hughes, 2002; Berry et al.,
002; Pearson and Dawson, 2003; Thuiller, 2003; Huntley et al.,
004; Thuiller et al., 2004a,b).

∗ Corresponding author at: Department of Geography, University of Oulu, P.O. Box
000, 90014 Oulu, Finland. Tel.: +358 8 553 1714; fax: +358 8 553 1693.

E-mail address: mathieu.marmion@oulu.fi (M. Marmion).

304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2008.10.019
nce of different modelling techniques represent one source of uncertainty
models. This should be taken into account in biogeographical modelling

ate change impacts.
© 2008 Elsevier B.V. All rights reserved.

However, developing useful and reliable applications of bio-
climatic models requires a considerable amount of knowledge
concerning the factors influencing the accuracy of model predic-
tions (Heikkinen et al., 2006). One potential source of uncertainty
in models is the fact that the performance of bioclimatic models
is affected by geographical attributes of species, e.g. latitudi-
nal range/marginality (Araújo and Williams, 2000; Segurado and
Araújo, 2004), prevalence (Manel et al., 2001; Brotons et al.,
2004; McPherson et al., 2004), spatial autocorrelation (Boone and
Krohn, 1999) and rarity (Karl et al., 2000, 2002). However, to
our knowledge the effects of these factors on the performance of
different state-of-the-art bioclimatic modelling techniques have
not been analyzed systematically. Our understanding of whether
some modelling techniques are more sensitive than others to the
effects of geographical attributes of species distribution patterns,

or whether some of the techniques are more buffered against such
effects, is thus rather limited. Improved knowledge of the poten-
tial sources of uncertainties stemming from species geographical
characteristics is essential for developing better understanding of
the performance of bioclimatic models (Heikkinen et al., 2006)

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:mathieu.marmion@oulu.fi
dx.doi.org/10.1016/j.ecolmodel.2008.10.019
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nd for interpreting the accuracy assessments (Fielding and Bell,
997).

In order to produce reliable estimates for species distributions,
t is important to know how different modelling techniques behave,
articularly when modelling species with different ecological and
eographical characteristics. A number of studies (Kadmon et al.,
003; Brotons et al., 2004; McPherson et al., 2004; Segurado and
raújo, 2004; Luoto et al., 2005) have shown that these factors may
ffect the modelling accuracy. However, the results of these studies
ave been contradictory. For example, Luoto et al. (2005) showed
hat the prevalence and the latitudinal range of species were nega-
ively and the spatial autocorrelation was positively related to the

odelling accuracy. By contrast, Manel et al. (2001) reported that
odel accuracy was independent of species prevalence. One pos-

ible reason for these contrasting results may be the fact that the
wo studies employed different modelling techniques (Generalized
dditive Model (GAM) in Luoto et al. (2005) and logistic regression

n Manel et al. (2001)), which may lead to divergent interpreta-
ions. Furthermore, as highlighted by Austin (2007), even models
hich belong to the same class (e.g. GAM) but employ different

ettings (e.g. degree of freedom of the smoothers) may have differ-
nt behaviours, indicating that results from different studies should
e compared carefully. Nevertheless, the overall message emerging

rom these studies, as well as from other complementary stud-
es (e.g. Kadmon et al., 2003; Brotons et al., 2004; McPherson et
l., 2004; Segurado and Araújo, 2004), is that species geographical
ttributes can significantly influence the behaviour and uncer-
ainty of species climate modelling techniques. This should be taken
nto account in applications such as assessment of climate change
mpacts.

In this study we provide a relatively comprehensive evalua-
ion of the effects of species geographical attributes on modelling
erformance using atlas data on butterfly distribution for the
hole of Europe (Kudrna, 2002). We explore simultaneously the

ffects of three geographical attributes on the accuracy of 100
limate–butterfly models using eight state-of-the-art modelling
echniques that are implemented in the BIOMOD modelling frame-
ork (see Thuiller, 2003). BIOMOD contains conventional and
ew modelling methods: Generalized Linear Models (GLMs), Gen-
ralized Boosting Method (GBM), Generalized Additive Models,
lassification Tree Analysis (CTA), Artificial Neural Network (ANN),
ultivariate Adaptive Regression Splines (MARS), Mixture Dis-

riminant Analysis (MDA) and Random Forest (RF). The predictive
ccuracy of the models was studied with a particular focus on two
uestions: (i) How are the different modelling techniques influ-
nced by the prevalence, spatial autocovariate and the latitudinal
ange of the species? and (ii) What are the relative roles of different
eographical attributes in the uncertainty of different modelling
echniques?

. Material and methods

.1. Butterfly data

A random selection of butterfly species (n = 100, 22%) was
xtracted from the 451 Lepidoptera species included in the Dis-
ribution Atlas of European Butterflies (Kudrna, 2002). In order to
educe the error associated with biased samples or small sample
ize (Barry and Elith, 2006), species with less than 10 records and
pecies for which distribution appeared to be insufficiently known

ere excluded from the analysis. The remaining 332 species were

ssigned to six broad categories according to their biogeographical
istribution, based on information derived from Kudrna (2002) and
shikolovets (2003). The six biogeographical categories of species
istribution were (1) bimodal/sporadic, (2) Southern Europe, (3)
lling 220 (2009) 3512–3520 3513

Mountains of Middle and Southern Europe, (4) Central Europe
(including species ranging from Central to Southern Europe), (5)
Northern Europe, and (6) Whole Europe (Luoto and Heikkinen,
2008). A set of 100 species was selected, including species from
each of these categories, and thus a representative sample of the
European butterflies from different environments was obtained
(Appendix 1). Species distribution data in Kudrna (2002) is given
using 2620 grid squares of 30′ × 60′ in size. However, only 1608 grid
squares were included in the analysis. Most of the eastern European
countries were excluded because of the obvious undersampling in
these areas. In total, 26,615 presences among the 100 species were
recorded over the 1608 grid squares.

2.2. Climate data

Climate data were obtained from the Climatic Research Unit
(CRU) climatological database (New et al., 2002; Mitchell et al.,
2004). In order to extend the spatial resolution from 0.5◦ × 0.5◦, the
averages for the time period 1961–1995 were interpolated from the
original 30′ × 60′ grid to match the species data. Following Hill et
al. (2003), we used three climate variables that provide essential
information about factors limiting butterfly growth and survival:
(i) annual temperature sum above 5 ◦C, (ii) mean temperature of
the coldest month, and (iii) the water balance index. Water balance
was calculated as the monthly difference between precipitation and
potential evapotranspiration and by summing the separate differ-
ences, as presented by Skov and Svenning (2004).

2.3. Model calibration and evaluation

All the different models were calibrated using the R environ-
ment software (R Development Core Team, 2004) and the BIOMOD
user interface (Thuiller, 2003). From the original set of data con-
taining 1608 grid squares, 70% (1125 grid squares) were randomly
selected to the model calibration data set, and the remaining 30%
(483 grid squares) were assigned into the model evaluation set used
in assessing the predictive accuracy of each model.

2.3.1. Models
2.3.1.1. Generalized Linear Models. GLMs are mathematical exten-
sions of linear models (McCullagh and Nelder, 1989). GLMs can
handle nonlinear relationships and different types of statistical dis-
tributions characterizing spatial data, and are technically closely
related to traditional practices used in linear modelling and analy-
sis of variance (ANOVA). For each of the 100 butterfly species, linear,
2nd and 3rd order polynomial terms were computed to provide the
probability of occurrence in each grid square, as a response to the
three climatic variables. An automatic stepwise procedure is used
by BIOMOD to compute the best model by minimizing the Akaike
information criterion (AIC) value (Thuiller, 2003).

2.3.1.2. Generalized Additive Models. GAMs are non-parametric
extensions of GLMs (Hastie and Tibshirani, 1990), and they are
often used in biogeographical studies (Guisan et al., 2002; Araújo
et al., 2004; Thuiller et al., 2006). They provide a flexible data-
driven class of models based on a cubic-spline smoother with four
degrees of freedom that permit both linear and complex additive
response shapes, as well as combination of the two within the same
model. The smooth functions are computed independently for each
explanatory variable and added to build the final model. The model

selection of GAM in BIOMOD is based on AIC (Thuiller, 2003).

2.3.1.3. Classification Tree Analysis. CTA is an alternative to regres-
sion techniques and has been used rather often in biogeographical
and environmental studies (Franklin, 2002). CTA uses recursive
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artitioning to split the data into increasingly smaller, homoge-
ous, subsets until a termination is reached (Venables and Ripley,
002). The optimal length of the tree is selected by a 50-fold cross-
alidation. The advantage of CTA is that it allows capturing of
on-additive behaviour and complex interactions. However, CTA
as a tendency to produce overly complex models that lead to spuri-
us interpretations (Breiman et al., 1984). CTA is used frequently for
iogeographical and environmental studies (De’Ath and Fabricius,
000; Vayssière et al., 2000; Franklin, 2002; Thuiller et al., 2004a,b).

.3.1.4. General Boosting Method. GBMs were recently introduced
n ecology. They are highly efficient in fitting the data, are
on-parametric and combine the strengths of different modern sta-
istical techniques (Ridgeway, 1999). Here, GBM was implemented
nto R (R Development Core Team, 2004) using the library GBM
Generalized Boosted Regression Modelling). GBM is based on the
radient Boosting Machine developed by Friedman (2001). GBM
roceeds via sequential improvements. Boosting is a numerical
ptimization technique for minimizing a loss function (such as
eviance) by adding at each step a new tree that best reduces the

oss function (Ridgeway, 1999; Elith et al., 2008). Environmental
ariables ˘ are input into a first regression tree, which maximally
educes the loss function. For each following step, the focus is on
he residuals. For example, at the second step a tree is fitted to the
esiduals of the first tree. The model is then updated to contain
wo trees, and the residuals from these two trees are calculated.
he sequence is repeated as long as necessary (Elith et al., 2008).
he maximum number of trees was set to 3000, and ten-fold cross-
alidations were performed. GBM belongs to the class of learning
ethods.

.3.1.5. Mixture Discriminant Analysis. MDA is an extension of lin-
ar discriminant analysis (LDA) (Venables and Ripley, 2002). MDA
ssumes that the distribution of the class of each environmental
ariable follows a Gaussian distribution. MDA enhances the LDA,
llowing the classifier to handle different prototype classes such
s a mixture of Gaussians. The environmental parameters form
rimal classes, which are divided into sub-classes. The classifica-
ion results from these sub-classes, a mixture density, describe
he distribution density of the primal classes of environmental
ariables. The number of sub-classes was deduced from the vari-
tion of the calibration (training) data. The characteristics of the
sed Gaussian density curves were deduced from the 1125 grid
quares included in the training data. An independent observa-
ion was then classified into the class, maximizing its probability to
elong to this particular class among the other ones (Ju et al., 2003;
ashir and Carter, 2005). It should be noted that different regres-
ion methods can be used in the optimal scaling process. BIOMOD
ses MARS (see below) to increase the predictive power of the
odel.

.3.1.6. Random Forest. RF belongs to the machine learning meth-
ds (Breiman, 2001). Random Forest generates hundreds of random
rees. A selective algorithm limits the number of implemented
arameters in each tree. A training set for each tree is chosen as
any times as there are observations, among the whole set of obser-

ations. For each node of trees, the decision is taken according
o randomly selected environmental parameters. Trees thus con-
tructed are not pruned and are as large as possible. After the trees
ave been built, data are entered into them and each grid square

ill be classified by all trees. At the end of the run, the classification

iven by each tree is considered as a “vote”, and the classification
f a grid square corresponds to the majority vote among all trees
Breiman, 2001). RF was used by Prasad et al. (2006) for vegetation

apping under current and future climate scenarios.
lling 220 (2009) 3512–3520

2.3.1.7. Multivariate Adaptive Regression Splines. MARS combines
classical linear regression, mathematical construction of splines
and binary recursive partitioning to produce a local model in which
relationships between response and predictors are either linear
or nonlinear (Friedman, 1991). A pre-processing algorithm of the
explanatory variables uses the basic functions (BF) max (0,X – c)
and max (0,c – X) to transform the environmental variables into
a new set of variables. The main difficulty is to find appropriate
“c” values, but a suitable choice makes it possible to approximate
any functional shape (Briand et al., 2004). Then, MARS performs
successive approximation of the system using different intervals of
the transformed variables ranges, by a series of linear regressions.
Examples of the use of MARS in biogeographical studies can be
found in Muñoz and Felicísimo (2004), in climatology in Corte-Real
et al. (1995) and in landscape ecology in Heikkinen et al. (2007).

2.3.1.8. Artificial Neural Networks. ANN is a powerful rule-based
modelling technique (Lek and Guegan, 1999), which is increasingly
used in bioclimatic envelope modelling (Thuiller, 2003; Heikkinen
et al., 2006). We used feed forward neural networks, which belong
to the machine learning methods and provide an alternative way
to achieve generalized linear regression functions (Venables and
Ripley, 2002). A network contains three different types of layers:
the input layer (in which the environmental variables are input),
the hidden (intermediate) layers and the output layer. Each layer
is composed of independent neurons; each of them treats sepa-
rately the outputs of all neurons from the previous layer as inputs
of multivariate linear functions. The process is continued until pro-
cessing of the output layer. To avoid overfitting in neural networks,
a four fold cross-validation method was implemented to stop train-
ing of networks. Once the complete network is built, the different
weighting factors of the multivariate linear functions are chosen by
minimizing the quadratic error of estimate.

2.3.2. Estimation of the model performance
After the models were calibrated, they were transferred to the

evaluation data set. In this process, climatic variables were used
as input in the models, and the outputs of the models were then
compared with the species binary presence/absence information
from the evaluation data set. In the evaluation, the area under the
curve (AUC) of a receiver operating characteristic (ROC) plot of each
model was calculated. AUC is a graphical method assessing the abil-
ity of a model to predict the absence or presence of species on the
basis of given criteria (e.g. climate variables), by representing the
relationship between the false positive fraction and the true posi-
tive fraction of the related confusion matrix of the evaluated model
(Fielding and Bell, 1997). The range of AUC is from 0 to 1. A model
providing excellent prediction has an AUC higher than 0.9, a fair
model has an AUC between 0.7 and 0.9, and a model is considered
as poor if its AUC is below 0.7 (Swets, 1988).

2.3.3. Species distribution
The geographical patterns of the modelled species were mea-

sured by three variables: latitudinal range, spatial autocovariate
(clumping of occurrences) and prevalence. The latitudinal range
of butterflies was measured as the distance between the north-
ernmost and southernmost distribution record in Europe. Our
latitudinal range variable measures geographical distance to the
range boundary. For example, a small distance from the north-
ernmost distribution record to the southernmost point in Europe
indicates that the species is close to the northern edge of its geo-

graphical distribution range (Thuiller et al., 2003). To measure the
degree of clumping of occurrences, a spatial autocorrelation vari-
able (i.e. autocovariate) for each individual species was calculated
using presence–absence information of the species in order to
reveal a patch-like autocorrelation structure in the butterfly data
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Table 1
Pearson correlation coefficient between the AUC values of the modelling techniques based on the evaluation data set, and the geographical attributes of the butterfly species.
The symbols* and ** indicate that the correlation is significant at the 0.05 and 0.01 levels, respectively.

ANN CTA GAM GBM GLM MARS MDA RF
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ll species
revalence −0.241* 0.193 −0.651**

patial autoc. 0.041 0.336** −0.051
atitudinal range −0.371** 0.205* −0.696**

Augustin et al., 1996). The autocovariate was based on Moran’s
ndex, following the method used by Luoto et al. (2005). Moran’s
ndex was calculated using the program Rookcase for irregular lat-
ice data using a lag of 75 km (eight possible nearest-neighbour
rid squares included) (Sawada, 1999). Prevalence, i.e. the ratio of
resence squares to the total sample, was calculated for all the
utterfly species studied (Manel et al., 2001). The performance of
ifferent modelling techniques for each species was related to the
hree geographical attributes of the species using multiple GAM. We
cknowledge here that both prevalence and latitudinal range are
ot only functions of the species, but they also depend on how the
tudy area is delimited and how the sampling has been performed
Albert and Thuiller, 2008). For example, some of the species stud-
ed here may have different prevalences on the regional scale than
n the continental scale. However, because our study area covers
representative part of the whole of Europe, we consider that our
ata provide a good approximation of the study species prevalence
n the continental scale.

. Results

.1. Effects of the geographical attributes

The species prevalence varied from 0.01 to 0.62, with a mean
f 0.16. This variation in species prevalence values had different

mpacts on the performance of different modelling techniques.
or all methods except CTA, a significant decrease in accuracy in
esponse to increasing prevalence was revealed (Table 1). As exam-
les, Figs. 1A and B illustrate the variation in model accuracy based
n GAM and RF in relation to species prevalence. The predictive
erformance of both models is better for low prevalence species.
ig. 2 shows projections of the distribution of two butterfly species:
ricias nicias and Apatum iris.

The spatial autocovariate varied from 0.00 to 0.89, with a mean
alue of 0.42. The negative correlation between the AUC values of
LM and GAM, and the Moran index of the species indicate that
oth methods are more accurate when the spatial clumping is low
Table 1). For all other models, the correlation was positive, and
ignificant at the 0.01 level only for RF and CTA. Figs. 1C and D
how that AUC values based on RF increase with clumping of the
odelled species, whereas the AUC values based on GAM hardly
ollow any trend.
The latitudinal range of species varied between 167 km and

840 km, with a mean of 1787 km. Table 1 and Figs. 1E and
show a clear negative correlation between the latitudinal

ange and model performance, except for CTA. The accuracy of

able 2
he effects of the geographical attributes on the performance of the eight modelling techni
or alone contribution and “drop” stands for drop contribution. The underlined value for a
y the attribute. The bold value underscores the model for which its variance is most inde

ANN CTA GAM GBM
al–drop al–drop al–drop al–dro

revalence 8.2–3.0 6.6–6.1 25.7–1.7 8.4–
patial autoc. 17.3–21.4 14.6–14.0 7.2–6.7 8.9–
atitudinal range 23.0–18.6 5.4–NS 28.8–4.8 10.2–
xpl. deviance 32.2 25.1 61.4 37.1
384** −0.651** −0.206** −0.469** −0.188
142 −0.159 0.183 0.136 0.283**

387** −0.680** −0.164 −0.461** −0.178

CTA models increased with increasing latitudinal range of the
species.

3.2. Accuracy of the models in relation to the geographical
attributes

The alone contribution (variable on its own) and the drop contri-
bution (when the variable was dropped from the saturated model)
of the three geographical attributes derived from GAM analysis with
modelling accuracy as response variable are presented in Table 2.
The explained deviance illustrates the degree to which the variance
of the modelling techniques is influenced by the three geographical
attributes in a multivariate setting based on GAM. The accuracies
of GAM, GLM and MDA were highly influenced by the three geo-
graphical attributes of the species. The explained deviances varied
from 43.8% to 61.5%. The machine learning methods RF, GBM and
ANN were moderately influenced by the geographical attributes,
whereas MARS and CTA were the least influenced techniques (18.5%
and 25.1%, respectively; see Fig. 3).

4. Discussion

Recently, several novel modelling methods have been utilised
in bioclimatic studies that have foundations in ecological, biogeo-
graphical and statistical research (Elith et al., 2006). Along with
well-established modelling methods such as Generalized Additive
Models and Artificial Neural Networks, we explored methods that
have been developed more recently, e.g. the Random Forest and
General Boosting Methods, or have rarely been applied to modelling
species distributions, e.g. MARS and MDA. In addition to the inher-
ent differences in the predictive capabilities of different techniques
(Thuiller, 2003; Segurado and Araújo, 2004; Pearson et al., 2006;
Heikkinen et al., 2007), a major problem in predictive modelling
studies is to understand what attributes of species might affect
model performance (McPherson et al., 2004; Luoto et al., 2005;
Pöyry et al., 2008).

In general, research on the effects of the geographical dis-
tribution of species on the accuracy of models has focused on
univariate analysis, e.g. the impact of prevalence on model perfor-
mance (Fielding and Bell, 1997; Manel et al., 2001; McPherson et
al., 2004). Studies on species distribution modelling have yielded

contrasting inferences about the importance of various geographi-
cal distribution factors for the performance of distribution models.
Statistical artefacts can confound results in comparative studies
investigating the role of species geographical attributes in mod-
elling performance (McPherson et al., 2004). In order to mitigate

ques based on GAM. “NS” attests not selected into the GAMs. “al” is the abbreviation
single row of the table emphasizes which modelling technique is most influenced
pendent of the attributes.

GLM MARS MDA RF
p al–drop al–drop al–drop al–drop

1.4 30.9–2.1 6.0–10.8 15.8–10.8 3.1–3.7
11.0 18.5–7.1 7.9–7.2 9.4–7.2 6.9–11.1
0.8 32.2–2.1 6.2–NS 17.7–NS 4.0–0.8

58.7 18.5 43.8 34.2
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ig. 1. The three geographical attributes of the species, prevalence (A and B), spatia
ccuracy of climate-butterfly models based on GAM and RF.

hese artificial effects, we based this study on the AUC derived from
he receiver operating characteristic plots, which are practically
mmune to prevalence and errors related to sample size (Manel et
l., 2001; McPherson et al., 2004). Most importantly, we estimated
he relative importance of different geographical attributes of the
pecies on different modelling techniques in order to deepen our
nderstanding of the performance of the techniques with different
pecies distribution patterns.

In general, our modelling showed a relatively close fit between
he three climate variables and the distributions of the studied
utterfly species in Europe, although the butterfly data were only
inary (present/absent) and coarse-grained (30′ × 60′). The aver-
ge level of discrimination in the models was 0.82, and varied
etween 0.75 (CTA) and 0.85 (GAM and RF). The rather high dis-

rimination ability and low proportion of poor models suggest that
utterfly distribution in Europe is clearly correlated with climate
see Luoto and Heikkinen, 2008), and that bioclimate envelope

odels can provide useful tools to identify the broad-scale rela-
ionships between these species and the environment (Pearson
covariate (C and D) and latitudinal range (E and F) showing relationships with the

and Dawson, 2003). However, comparisons of the performance
of the eight modelling techniques indicated certain clear and
important differences between the techniques in relation to the
three geographical attributes of the species. Thus geographical
attributes, such as prevalence, latitudinal range and spatial auto-
correlation, may have a notable influence on the accuracy of the
models.

4.1. Species geography

Numerous studies have recently demonstrated that the perfor-
mance of the bioclimatic models may depend on the characteristics
of the species (e.g. Venier et al., 1999; Karl et al., 2002; Thuiller
et al., 2003; Segurado and Araújo, 2004; Luoto et al., 2006).

These studies have indicated that species with limited geographic
ranges and specialist species with strict ecological requirements
are generally modelled more accurately than species with wide
geographic ranges and generalist species with wide ecological
tolerance (Heikkinen et al., 2006). However, systematic com-
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ig. 2. Projected probability of occurrence of Aricia nicias (A, B and C) and Apatum
rey scale represents the four different probability classes and the black dots are th

arisons with large samples of species and several statistical
echniques potentially contributing to model uncertainty are lack-
ng. In order to take full advantage of the species–climate models
nd to identify critical sources of uncertainties in the models, we
eed to understand whether the variation in model performance
eveals inherent biogeographical or ecological differences in the

redictability of different species or whether it reflects statisti-
al or spatial artifacts (Legendre et al., 2002; McPherson et al.,
004).

In our study, prevalence strongly influenced the accuracies
f the modelling techniques. This corresponds with observations
, E, and F) provided by CTA (top row), GAM (middle row) and RF (bottom row). The
rved occurrences.

made by Segurado and Araújo (2004) and Luoto et al. (2005).
Their results indicate a trend towards increasing model perfor-
mance for restricted-range species and decreasing performance for
widespread species. One of the main arguments explaining the neg-
ative correlation between modelling accuracy and prevalence is the
biological niche complexity. A low prevalence indicates a narrow

biological niche of the species, which is often rather straightfor-
ward to define in a multivariate setting. Segurado and Araújo (2004)
noted that model performance is higher for species with high envi-
ronmental marginality and low niche breadth than for generalist
species. By contrast, a species with high prevalence can adapt over
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(project grant 116544). We thank Otakar Kudrna for permission to
ig. 3. The performance of the modelling techniques with respect to their predictive
ccuracy (AUC) and sensitivity to the geographical attributes (geography effects).

wide range of different climatic environments and its distribution
s more difficult to model.

However, we note here that a number of previous studies con-
radict these arguments. For example, Seoane et al. (2005) showed
hat the predictive power of regression trees (RT) was highest when

odelling species with high prevalence, and Dormann (2007) and
eineking and Schröder (2006) showed that different autologis-
ic regression methods were severely impacted by the prevalence
f species, such models only being accurate for species with high
revalence. In the study by Meynard and Quinn (2007), Genetic
lgorithm for Rule-Set Prediction (GARP) also provided most accu-

ate models for species with high prevalence. However, models
ased on GARP use presence only data, which may in part explain
his behaviour. McPherson et al. (2004) analyzed the accuracy
f bird distribution and concluded that the models were more
ccurate for intermediate prevalence. By contrast to these stud-
es, Pöyry et al. (2008) were not able to detect any effect of
he niche width on the performance of climate-butterfly models
n Finland. However, they noticed that the accuracy of climate-
utterfly models decreases with increasing mobility and the length
f the flight period. The mobility index was significantly posi-
ively correlated with prevalence, which is in agreement with our
esults. Finally, Manel et al. (2001) reported that AUC measures
ased on large invertebrate data from Himalayan streams were

ndependent of prevalence. Potential reasons for these opposing
utcomes may arise from the fact that in the current study a wider
ange of modelling techniques and their sensitivities to species
eographical attributes were examined, which might lead us to
esults which could be applied more generally than previous stud-
es.

In this study, latitudinal range also affected the model per-
ormance: the accuracy of the models decreased with increasing
atitudinal range. The climatic environment varies considerably

ith the latitude. Thus, a species that occurs over a wide latitudinal
ange is obviously adapted to various types of climates. By contrast,
hen the latitudinal range of a given species is low, the climatic

nd environmental space of the species is restricted. Concerning the
patial autocorrelation, our results do not show any general trend
hich can be clearly linked with the different methods. However,

patial autocovariate was statistically the most significant factor

f the three geographical attributes in explaining the variation in
he performance of ANN, CTA and GLM. Our results correspond
ith those of de Frutos et al. (2007) and Dormann (2007), which

ighlighted the high sensitivity of logistic regression and other
lling 220 (2009) 3512–3520

GLM methods to spatial autocorrelation. In comparison with spa-
tial autocovariate, latitudinal range strongly influences ANN, GAM,
GLM and MDA, whereas prevalence influences almost at the same
level in all models.

The eight modelling techniques can be assigned to three cat-
egories on the basis of their sensitivities to the geographical
attributes of the species. GAM, GLM and MDA are most severely
influenced by the geographical attributes (explained deviance
higher than 40%). GAM and GLM are rather similar techniques
and computationally relatively simple. Machine learning methods
(ANN, GBM, RF) are characterized by moderate effect of the geo-
graphical attributes on the modelling accuracy (explained deviance
between 30 and 40%). By contrast, it appears that CTA and MARS
are less controlled by the geographical attributes of the species
than the other methods. This can be partly explained by the
fact that there are probably other major sources of uncertainty
that affect the predictive accuracy of these methods. However,
we acknowledge that the outcomes of comparative analysis of
different modelling techniques, including the present one, may
also be influenced by the different setting of the algorithms. For
example, Leathwick et al. (2006) compared GAM models with
four different types of MARS models, including multiresponse and
interaction settings. Their results suggested that (i) the deviance
explained by the models and their predictive accuracy was highly
influenced by the chosen setting and (ii) projections based on
GAM and MARS had similar accuracy, which partly contradicts our
results.

5. Conclusions

The results of this study indicate that novel modelling meth-
ods provide various prediction accuracies, which are notably
influenced by geographical attributes of species. The modelling
performance was related negatively to the latitudinal range and
prevalence, whereas the effect of spatial autocorrelation on pre-
diction accuracy depended on the modelling technique. Predictive
accuracy of certain modelling techniques, particularly GAM, GLM
and MDA, appears to be highly influenced by the three geo-
graphical attributes, whereas other techniques are less affected.
These results draw attention to the importance of geographi-
cal attributes for bioclimatic envelope models, as well as for
species spatial distribution models in general. Most importantly,
geographical attributes have contrasting effects on the perfor-
mance of different state-of-the-art modelling techniques. Such
uncertainties should be taken into account by down-weighting
or excluding species or statistical techniques in studies apply-
ing bioclimatic modelling and in assessments of climate change
impacts.

Acknowledgments

Different parts of this research were funded by the EC FP6 Inte-
grated Project ALARM (GOCE-CT-2003-506675). WT was partly
funded by the EU FP6 MACIS species targeted project (Minimisa-
tion of and Adaptation to Climate change: Impacts on biodiversity,
contract No.: 044399) and EU FP6 ECOCHANGE integrated project
(Challenges in assessing and forecasting biodiversity and ecosys-
tem changes in Europe). MM was funded by the Academy of Finland
use the European butterfly distribution data via the ALARM coor-
dinator. M. Bailey helped with correction of the English text. The
comments raised by two anonymous referees helped in improving
this paper.



l Mode

A
a

S

A
B
E
P
A
A
A
C
C
C
C
C
E
E
E
E
G
H
H
H
H
H
L
L
M
M
M
M
N
P
P
P
P
P
P
P
S
Z
B
B
C
E
E
E
M
O
P
P
A
A
B
C
C
C
H
P
S
S
C
F
H
H
M
N
P
P
P
P
P
P
S
S
S
S

Elith, J., Graham, C., Anderson, R., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J.,
Huettmann, F., Leathwick, J.R., Lehman, A., Li, J., Lohman, L.G., Loiselle, B.A.,
Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. Overton, J., Peterson,
T.A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J.,
Williams, S., Wisz, S., Zimmermann, N.E., 2006. Novel methods improve predic-
tion of species’ distributions from occurrence data. Ecography 29, 129–151.
M. Marmion et al. / Ecologica

ppendix A. Selected 100 butterfly species classified
ccording their biogeographical distribution.

pecies European distribution

ricia nicias Bimodal/sporadic
oloria thore Bimodal/sporadic
rebia pandrose Bimodal/sporadic
lebejus orbitulus Bimodal/sporadic
rchon apollinus Southern European
ricia anteros Southern European
ricia morronensis Southern European
archarodus orientalis Southern European
haraxes jasius Southern European
oenonympha dorus Southern European
olias aurorina Southern European
upido osiris Southern European
rebia melas Southern European
rebia ottomana Southern European
rynnis marloyi Southern European
uchloe belemia Southern European
laucopsyche melanops Southern European
ipparchia briseis Southern European
ipparchia fatua Southern European
ipparchia fidia Southern European
ipparchia sentles Southern European
ipparchia volgensis Southern European
eptotes pirithous Southern European
ycaena ottomana Southern European
aniola bathseba Southern European
elanargia arge Southern European
elanargia occitanica Southern European
elitaea parthenoides Southern European
ymphalis egea Southern European
apilio alexanor Southern European
ararge roxelana Southern European
olyommatus albicans Southern European
olyommatus dolus Southern European
olyommatus escheri Southern European
olyommatus nivescens Southern European
yrgus onopordi Southern European
colitantides bavius Southern European
erynthia cerisyi Southern European
oloria graeca Mountains of middle and southern Europe
oloria pales Mountains of middle and southern Europe
olias phicomone Mountains of middle and southern Europe
rebia epistygne Mountains of middle and southern Europe
rebia eriphyle Mountains of middle and southern Europe
rebia pronoe Mountains of middle and southern Europe
elitea varia Mountains of middle and southern Europe
eneis glacialis Mountains of middle and southern Europe
arnassius phoebus Mountains of middle and southern Europe
lebejus glandon Mountains of middle and southern Europe
patura ilia Central Europe
patura iris Central Europe
oloria dia Central Europe
oenonympha arcania Central Europe
olias myrmidone Central Europe
upido argiades Central Europe
ipparchia semele Central Europe
ararge achine Central Europe
atyrium pruni Central Europe
atyrium w-album Central Europe
archarodus flocciferus Central Europe
avonius quercus Central Europe
amearis lucina Central Europe
eteropterus morpheus Central Europe
elitaea didyma Central Europe
ymphalis polychloros Central Europe
ararge megera Central Europe
arnassius mnemosyne Central Europe
lebejus argyrognomon Central Europe
yrgus armoricanus Central Europe
yrgus carthami Central Europe
yrgus serratulae Central Europe
atyrium ilicis Central Europe
atyrium spini Central Europe
colitantides baton Central Europe
colitantides vicrama Central Europe
lling 220 (2009) 3512–3520 3519

Thecla betulae Central Europe
Aporia crataegi Whole Europe
Argynnis niobe Whole Europe
Argynnis paphia Whole Europe
Boloria euphrosyne Whole Europe
Boloria selene Whole Europe
Brenthis ino Whole Europe
Coenonympha glycerion Whole Europe
Erebia ligea Whole Europe
Euphydryas aurinia Whole Europe
Euphydryas maturna Whole Europe
Glaucopsyche alexis Whole Europe
Nymphalis c-album Whole Europe
Nymphalis io Whole Europe
Nymphalis urticae Whole Europe
Ochlodes sylvanus Whole Europe
Papilio machaon Whole Europe
Pararge aegeria Whole Europe
Pararge maera Whole Europe
Boloria aquilonaris North Europe
Boloria chariclea North Europe
Carterocephalus silvicolus North Europe
Erebia embla North Europe
Erebia polaris North Europe
Oeneis bore North Europe
Oeneis jutta North Europe
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